Since the 1960s, the Drake Equation has been used to predict how many communicative extraterrestrial civilizations exist in the Milky Way galaxy. Along these same lines, a new formula seeks to estimate the frequency at which life emerges on a planet—a calculation that might allow us to figure out the likelihood of life arising elsewhere in the universe.

The new equation, developed by Caleb Scharf from Columbia Astrobiology Center and Leroy Cronin from the School of Chemistry at the University of Glasgow, can’t yet be used to determine the chances of life existing elsewhere, but it’s a promising start in that direction.

Fundamentally, the researchers hope that their new formula, described in the latest edition of the Proceedings of the National Academy of Sciences, will encourage scientists to study the various factors that link origin-of-life events to specific characteristics within planetary environments. More conceptually, they hope their equation will eventually be used to predict the frequency at which planets experience an origin-of-life event, also known as abiogenesis. As the researchers explained to Gizmodo, “This would allow us to figure out the likelihood of life arising elsewhere in the Universe.”

Above: Video explainer on the Drake Equation

Those familiar with the Drake Equation will be familiar with how this works. Back in 1961, astronomer Frank Drake crafted a probabilistic formula to help estimate the number of active, radio-transmitting alien civilizations in the galaxy. His formula was packed with several unknown values, including the average rate of star formation, the average number of planets that can potentially support life, the fraction of planets that actually go on to develop intelligent life, and so on. We don’t have a definitive answer to the Drake Equation, but we’re certainly getting better at filling in the blanks.

The new formula developed by Scharf and Cronin isn’t an attempt to replace the Drake Equation. Instead, it’s meant as a deep dive into the more granular issue of abiogenesis.

Here’s what the formula looks like:

Where :

• Nabiogenesis (t) = Liklihood of origin of life events
• Nb = Number of potential building blocks
• No = Mean number of building blocks per organism, or biochemically significant system
• fc = Fractional availability of building blocks during Time t
• Pa = Probability of assembly per unit time

It looks complicated, but it’s fairly straight forward. The equation is basically saying that the probability of life arising on a planet is closely tied to the amount of life-sustaining chemical “building blocks” available on the planet.

By building blocks, the researchers are referring to the minimum chemicals required to start the processing of making a simple life form. This could be DNA/RNA base pairs or amino acids, but it could also mean any available molecules or materials on the planet that can get involved with the chemical reactions that could lead to life. Chemistry is still chemistry across the universe, but other planets may have stumbled upon different approaches for spawning life.

More specifically, Scharf and Cronin’s equation states that the odds of life emerging on a planet are driven by the number of building blocks that could possibly exist, the number of building blocks available, the probability that these building blocks will actually go on to create life (i.e. assembly), and the number of building blocks needed to produce a given life form. So, in addition to identifying the chemical prerequisites for life, this equation seeks to determine the frequency at which reproductive molecules emerge. Here on Earth, abiogenesis was characterized at the moment when RNA emerged. This critical step was followed by the rise of simple single-celled life (prokaryotes), and then complex single-celled life (eukaryotes).

“Our approach links the chemistry on the planet to the global rate of life starting—this is important as now are starting to find lots of solar systems with multiple planets,” Cronin told Gizmodo. “For example, we think that having a smaller planet nearby—like Mars—is potentially important since it got cooler quicker than the Earth...some chemistry could ‘get started’ and then impact ejections could transport that complex chemistry to earth to help ‘kick-start’ the chemistry on earth.”

Indeed, one of the major realizations of this study is that planets cannot be studied in isolation. As Cronin noted, Mars and Earth may have been involved in cross-contamination at some point in our distant past—an exchange of materials that may have contributed to the rise of life on Earth. This new research suggests that the transfer of chemical building blocks between nearby planets could significantly increase the odds of life arising on them.