A flyover of Los Angeles using Autodesk InfraWorks

The Los Angeles project is moving quickly on this front, having compiled a digital model that covers 5,700 square miles, hundreds of thousands of miles of roads and over three million buildings. They can track storm water drainage, sewage lines below the surface, the emerging light rail and subway systems, seeing all this stuff in context as it fits into the natural and man-made landscape. Overlaying data collected from the utility grid and water supply systems designers can reason about consumption, conservation and the specific effects their project will have on the city itself.

Advertisement

Compiling and integrating all this data is challenging but possible in the age of cloud computing and high-resolution computer graphics. You have to be able to see and use all this information when designing a building to really gain the benefits of architecture created in digital context. Plugging your project into a virtual simulation of the city means really understanding how it will work in it surroundings and specific environment.

Advertisement

Visualizing carbon emissions in New York City, courtesy Autodesk

Detailed building design benefits from the same insights gleaned from high-resolution digital models. The city model tells you where the water and power come from, how the sun moves over the site, and where the wind might be expected, and that information drives the design of the selection of glass, heating and cooling systems, and ventilation.

Advertisement

The Wilshire Grand in downtown LA, currently rising to 73 stories, will soon be the tallest building west of the Mississippi. Its designers are using the cloud to understand, simulate and visualize the immense complexity of the building's mechanical, electrical and plumbing systems—including how those systems are fed by city services.

Advertisement

The Shanghai Tower's torqueing design based on urban wind flow simulations. Image courtesy of Shanghai Tower Construction and Development Co., Ltd. Rendering by Gensler.

In another example, the designers of the soon-to-be world second tallest building, the Shanghai Tower, conducted wind simulations based on urban data in that typhoon-prone city. They were able to adapt their design with a 120 degree twist of the façade to reduce wind sheer—thereby cutting the amount of structural steel and glass used by the building, and saving the owners a cool $58 million in the process.

Advertisement

Even more ambitious plans for this kind of insight and technology are underway in Singapore, where the government aims to become the world's first "smart nation." Building on its impressive emergence as internet infrastructure hub for Asia Pacific, the city-state is now moving to create an incredibly data-rich digital model of its built environment, going beyond simulating wind flows around buildings to include other dynamic traffic patterns such as pedestrians, noise, rain and flood water, sunlight, data signals, even disease movements.

Modern designs are moving from individual models of these components to connected systems that yield the design. And architects, especially those working in urban environments, are becoming systems thinkers in the grandest sense of the term.

Advertisement

We can only expect better buildings—and better cities—as a result.


Phil Bernstein is VP for Strategic Industry Relations at Autodesk and a member of the faculty at the Yale School of Architecture.

Advertisement

Top image: A 3D model of LA, courtesy Autodesk