Credit: Technigeek, YouTube

Boosting the upper body, too

The majority of exoskeletons currently on the market only focus on the lower body. For one, demand is simply higher—your legs are what give you mobility, after all. Two, upper body problems are tougher to solve, because the range of motion is more complex.

Advertisement

“The ability to pick up a cup of coffee and moving it around is more complicated than moving your feet forward,” says professor Jacob Rosen, director of UCLA’s Bionics Lab. He specializes in working with stroke patients, who often have one healthy, mobile arm, and one that is paralyzed. The goal is to use exoskeletons to restore life to the affected arm.

“We are designed to deal with an environment that is hard to predict,” Rosen says. “That’s why we have two arms, two lungs, two kidneys.” And since we’re not starfish that can sprout backup extremities, we have to get a bit more creative in how we adapt to such situations.

Advertisement

The UCLA Bionics Lab is currently outfitting stroke patients with robotic arms using a technique called “mirror image.” Patients put both arms (one healthy, one paralyzed) in exoskeletal sleeves and then begin navigating a virtual reality system—for example, playing a squash game. Every time the patient moves the healthy arm, electrical signals are sent to the other sleeve, which moves the paralyzed arm in the same fashion. This could help stroke victims “relearn” how to use their upper limbs.

In another activity that also resembles physical therapy, an “artificial force field” is created. The exoskeleton will help a paralyzed arm move within a restricted space. In the game, the patient must “paint” a virtual surface, but every time the arm strays from the area that’s supposed to be painted, the robotic sleeve pushes the paralyzed arm back, replacing the need for another human to physically force the patient’s arm to move in certain ways in order to rebuild mobility.

Advertisement

Rosen with his arm exos. Image: UCLA

The experts I talked to echoed that exoskeletons empower people to discover—or often, rediscover—their own strength. Rosen says they’re not eliminating jobs like physical therapists, but adding to the therapy dynamic, and building on it. With a therapist, you only get as much treatment as the amount of time the other person has for you. But with an exoskeleton? “It’s as much as your body can tolerate,” says Rosen. “That’s way more than what a therapist can provide.”

Advertisement

Artificial muscles will get even stronger

So the future exoskeleton will be easier to wear and available for other parts of the body. But it’ll also be stronger. A key factor that will drive exo evolution in the coming years is the material they’re made with. The robo-suits of the future could sport an interesting new ingredient that could give the wearer strength that equals 100 times what humans are capable of. That secret weapon: artificial muscles.

Advertisement

A team at the University of Texas, Dallas published a paper last year that found high-strength polymer fishing line and sewing thread can be twisted to form Herculean, manmade muscles. Here’s how it works: Coiled polymer fiber react to changes in temperature, contracting when heated and then loosening when cooled. Natural human muscles contract by about 20 percent, but these materials go as high as 50 percent—they contract further because of their twisted shape, giving the polymer muscles way more strength than a mere gym-going mortal.

These artificial muscles made of fishing wire would have the added benefit of being lightweight, not to mention cheap. “One of the problems right now with existing exoskeletons is that they’re powered pneumatically or hydraulically or by motors. They’re limited in their freedom,” Dr. Ray Baughman, leader of the study, says. “Motors are heavy. Hydraulic systems are heavy.”

Advertisement

Exoskeletons can make us super strong, super fast, and point to a world where tragic accidents or debilitating diseases don’t have the final say as to how our lives will unfold. But how can we grant humans these extra powers in a way that’s safe, economical, and realistic? That’s the question scientists are trying to answer now. What will likely guide the next few years’ of exo design is making them accessible and affordable enough for people to actually wear and use.

“A $100,000 exo is not really useful for any manager to buy for their workers,” Kazerooni says. “We can’t wait too long. There are too many people who need these technologies quickly. They needed it yesterday.”

Advertisement

Technology’s warp-speed development often makes real-life feel like scifi. And chances are, exos will be as commonplace as smartphones one day. We could see wearable robots at airports on the luggage handlers, or on the street, worn by athletes who have torn ACLs but who can walk normally. We could see them at supermarkets, factories, and shops worn by staff moving monster heaps of stock easier and faster than ever. We could even restore powers that if lost, were once gone for good. No more.

And, hopefully, we won’t need them for Gundam-like warfare. But they’ll still make us action heroes.

Advertisement

A paraplegic man uses an exoskeleton to walk. (Credit: Getty)