A Facade That Eats Smog

Back in 2011, the chemical company Alcoa unveiled a remarkable technology that could clean the air around it. The material contained titanium dioxide, which effectively "scrubbed" the air of toxins by releasing spongy free radicals that could eliminate pollutants. The stuff has made appearances on streets, clothing, and architecture since then—most recently, on the sun screen of a new Mexico City hospital, the Torre de Especialidades.

Advertisement

The hospital is cloaked in a 300-foot-long skin of Prosolve370e tiles, developed by a German firm called Elegant Embellishments. The technology is based on the same process: As air filters around the sponge-shaped structures, UV-light-activated free radicals destroy any existing pollutants, leaving the air cleaner for the patients inside. According to Fast Company, even the shape of the sun screen is significant: It creates turbulence and slows down air flow around the building, while scattering the UV light needed to activate the chemical reaction.

Advertisement

A Low-Tech, Operable Skin

In Melbourne, Sean Godsell Architects sheathed RMIT's design school in thousands of small, sandblasted glass circles—each affixed to a central rod. Based on humidity and temperature inside the building, these rods pivot automatically to facilitate (or block) the flow of air through the facade. A simple but clever solution.

Advertisement
Advertisement

A Metal Mesh That Reacts to Heat

Bloom, a temporary installation by USC architecture professor Doris Kim Sung, isn't technically a facade. But it's not long before a similar technique is used in buildings.

Advertisement

Sung's research deals with biomimetics, or how architecture can mimic the human body. This sun shade was made with thermobimetal—a material that's actually a laminate of two different metals, each with its own thermal expansion coefficient. That means that each side reacts differently to sunlight, expanding and contracting at different rates—causing tension between the two surfaces, and ultimately, a curling effect. So when the surface gets hot, the thin panels on the shade curl up to allow more air to pass through to the space below—and when it cools down, it closes up again.

Advertisement

There are hundreds of other examples out there, so comment below if we've missed a really interesting one.