“Passenger pigeon DNA is really fragmented,” Novak told me. “The pieces we get are anywhere from 30 to 150 base pairs in size.” To give you an idea of what this means, a base pair represents a single letter in the DNA code. The entire passenger pigeon genome contains 1.3 billion of them.

Advertisement

“We don’t get anything big, and it’s very, very difficult to piece any of that together, because not only is it short, it’s riddled with false mutations from damage,” he added.

And yet, the speed and accuracy of our DNA sequencing technology has advanced to the point where we’re able to take the many reads needed to spit out all the sentence fragments in a broken genome. But to put the pieces back together, scientists need a reference genome—a very similar book that’ll serve as a guide. This past March, Novak and his team completed genomic sequencing for the band-tailed pigeon, a close living relative of the passenger pigeon that differs in roughly 3 percent of its DNA. Using the band-tailed pigeon as a map, they’ve successfully reassembled several complete passenger pigeon genomes.

Advertisement

Getting the passenger pigeon’s genetic code written and pieced together was an enormous achievement, but still, it’s only the first step toward a much larger goal. To find out what parts of the genome encode for meaningful passenger pigeon traits, the team’s next goal will be to look at RNA—transcript copies of genes that cells use to make proteins. Once they’ve sequenced the band-tailed pigeon’s entire RNA library, or transcriptome, they can use to the information to identify important genes within the passenger pigeon genome.

“That’s when we start doing the fun preparations for trying to make a bird,” Novak told me.

Advertisement

Unlike the Pyrenean ibex or gastric brooding frog, scientists aren’t going to be able to stick the entire passenger pigeon genome inside a host egg. Bird eggs are enormous, not to mention that they’re enclosed in a hard outer shell. Novak compares removing the tiny, DNA-containing nucleus from a bird’s egg to finding a white marble in a vat of milk. And inserting a new nucleus containing other genetic information is another can of worms entirely.

Advertisement

The process Revive and Restore plans to use to make hybrid birds with passenger pigeon traits

Instead, the current plan is to use CRISPR gene-splicing technology to cut out pieces of band-tailed pigeon DNA from germ cells and hack in the corresponding passenger pigeon traits. In this manner, scientists can create hybrid cells containing all the important genes that distinguish the passenger pigeon from its close cousin. Hybrid cells cooked up in petri dishes will then be injected into the bloodstream of developing band-tailed pigeon embryos, where they’ll eventually migrate to the gonads. After the eggs hatch and the squabs mature, some of their eggs or sperm will contain the instructions for an animal that looks a lot like a passenger pigeon. Another generation of captive breeding, and a small number of passenger pigeon-like individuals could be born.

Advertisement

Nothing like this has ever been done before, and nobody’s quite sure how it’ll all go down. But the passenger pigeon isn’t the only animal we’re trying to hack back into existence one gene at a time.

Similar efforts to revive the wooly mammoth are moving full steam ahead. In April, a team of researchers at McMaster University’s Ancient DNA Center published the most complete wooly mammoth genomes to date representing two individuals whose remains were buried in the Siberian tundra 40,000 years apart. Meanwhile, Harvard geneticist George Church and his colleagues are busy using CRISPR to splice genes for mammoth ears, subcutaneous fat, hair length and color into the DNA of elephant skin cells. These chimera cells, while a far cry from a bonafide mammoth, show that the dream of recreating the iconic Pleistocene elephant is very much alive and kicking.

Advertisement

We Can De-Extinct, But Should We?

Advertisement

Worst case scenario. Worst case.

Bringing back a single individual from an extinct species would be an incredible achievement. Our course, at least two animals are needed to breed, and in theory, we’d like to have many more, each contributing some amount of genetic diversity to the population. The fewer unique individuals we start with, the more likely we are to end up with a race of genetically-impoverished clones.

Advertisement

Scientists in the de-extinction game are not insensitive to this problem, but the amount of genetic diversity we can theoretically infuse depends on a number of factors, including how many unique versions of the extinct organism’s genome we have access to. For the passenger pigeon, several complete genomes have now been sequenced, which scientists can scour for genetic mutations. When creating hybrid germ cell lines, they can intentionally introduce different versions of genes where diversity exists. Novak is hopeful that Revive and Restore can create an initial breeding stock with enough diversity to eventually produce a healthy passenger pigeon population.

For other extinct creatures, a single clone, or a handful of very genetically similar individuals, might be all that’s in the cards. Which begs another question that every scientist involved with de-extinction efforts today has to grapple with: Is all of this effort really worth it?

Advertisement

Why bother to bring Celia’s clone back into the world, when she’ll never have a male Pyrenean ibex to breed with? Why go to pains to reconstruct a mammoth gene by gene, if the chimera population is doomed to be a shadow of its former self?

Critics of de-extinction often argue that reviving lost species takes money and intellectual resources away from efforts to save those we’ve still got. Fair point, especially given the depressing truth that human activity has driven the rate of species disappearance a thousand times above background, pushing us headlong into a sixth mass extinction.

Advertisement

But Novak and his peers counter that some of the methods they’re honing through de-extinction efforts, including cloning and infusing cell lines with gene diversity, might be co-opted to help restore genetically impoverished populations. Indeed, along with its efforts to bring back the passenger pigeon, Revive and Restore is researching black footed ferret genomes. In the future, the company hopes to use “genetic rescue” techniques to help fortify the black footed ferret with mutations that were lost when the population dwindled to a mere seven individuals.

What’s more, many of the species that have gone extinct in recent human history provided vital ecosystem services while they were living. Bringing them back might be an important step toward restoring human-altered ecosystems to something akin to their natural state.

Advertisement

“All of the biodiversity in forests of North America co-evolved with huge flocks of billions of passenger pigeons over thousands and thousands of years,” Novak said. “Getting these birds back into the forest is going to be a part of making productive, bioabundant ecosystems that are more adaptable to climate change. It’ll make the management and conservation of other species easier for human beings.”

More saliently to the Jurassic Park-loving public, the idea of de-extincting life inspires wonder and awe. We may never see live herds of brachiosaurus stampede across a tropical island, but the technology to reproduce a 40 thousand-year-old Pleistocene mammoth is now within reach.

Advertisement

I don’t know about you, but I think a herd of mammoths stamping across snowy northern Canada would be a pretty cool thing to see.


Top image: Wikimedia. Middle Images: Shutterstock. Bottom image: Universal City Studios, Inc. & Amblin Entertainment, Inc.