Advertisement

But in order to take full advantage quantum effects, the DW2 requires very specific, extreme conditions. For one, it operates at 0.02 Kelvin—150 times colder than the depths of interstellar space and just two degrees above absolute zero—in a vacuum 10 billion times lower than standard atmospheric pressure and experiences 50,000 times less magnetic interference thanks to its heavy shielding. Surprisingly, achieving these temperatures consumes just 15.5kW and takes up just ten square meters of floor space, compared to the thousands of kilowatts and warehouses of space that traditional super computers require.

Advertisement

A qubit - Ndickson at en.wikipedia

Google, NASA, and the Universities Space Research Association all kicked in on a DW2 in May of last year—D-Wave Systems won't quote prices though the BBC estimates its cost at about $15 million—for machine learning research (which would help explain why Google's been snapping up every AI designer and robotics company it could get its hands on over the last six months). Quantum computing still has a way to go before it's reliable, but between recent breakthroughs and kickass hardware, it shouldn't be long before it's ready to catapult us into the future. [Wiki 1, 2 - Extremetech - BBC - D-Wave Systems - Nature]

Advertisement