Today, we have three primary frame rate standards—24p, 25p, and 30p—and a whole slew of competing alternatives that constitute various potential future standards American (NTSC) broadcasts are done so at 24p and provide a very "cinema-like" motion blur effect, European PAL/SEACAM-derived broadcasts go out at a perceptively identical but mathematically different 25p since their TVs work on the a base-50Hz scale rather than North America's 60Hz, and 30p is the de facto standard for home movies and personal camcorders as it accurately mimics 35 mm's feel without as many visual artifacts.

Advertisement

The alternative frame rates include: 48p, which is what Peter Jackson used to film The Hobbit. Going higher, you've got 90p and 100p, which are options on the GoPro Hero, and 120p, which is the new standard in UHD televisions (and part of rec.2020). The highest current commercially available frame rate is 300 FPS, which the BBC has been playing around with for some of its sports broadcasts (no, not for cricket) and is could prove quite helpful in the future as it can easily be stepped down to both 50 Hz and 60 Hz without a lot of effort.

Advertisement

So which frame rate is best?

That depends on who you ask. Peter Jackson thought he saw the light when filming the Hobbit,
posting the following to Facebook in November, 2011:

Film purists will criticize the lack of blur and strobing artifacts, but all of our crew—many of whom are film purists—are now converts. You get used to this new look very quickly and it becomes a much more lifelike and comfortable viewing experience. It's similar to the moment when vinyl records were supplanted by digital CDs. There's no doubt in my mind that we're heading towards movies being shot and projected at higher frame rates.

Advertisement

Unfortunately, very few people agreed. It will be interesting to see how James Cameron's Avatar sequels, both of which are reportedly being shot at 48 FPS , will fare. Maybe Edison was just wrong, and maybe we're too used to the effects of 24 FPS motion blur which soften our movies, make them look more dreamlike, and make the props and other semi-realistic stuff a little fuzzier and easier to believe.

Advertisement

According to Simon Cooke of Microsoft's Advanced Technology Group, faster is indeed better because of how the human eye works on a mechanical level. Cooke's explanation immediately dives into a bunch of math and complex biological terminology (you can confound yourself with it here) but basically, his point is that your eye jiggles just a little bit—as a sack of jelly is wont to do—even when you're focused on a fixed point. These jiggles, known as ocular microtremors, occur at an average rate of around 84 Hz and, he proposes, this helps your brain better discern edges within your field of vision by providing the cones in your retina two very slightly different angled views of the same object. With twice the amount of information coming in to your visual cortex, your brain is able to stitch together a better visual image with more defined edges.

But with the current 24 FPS standard, your eyes' jiggles aren't actually doing anything because the image isn't changing fast enough for the microtremors' sampling effect to actually work. At those rates, "Your eye will sample the same image twice, and won't be able to pull out any extra spatial information from the oscillation," writes Cooke. "Everything will appear a little dreamier, and lower resolution."

Advertisement

Cooke recommends running content above 41 Hz (that's at least 43 FPS) or about half of the oscillation rate of the human eye. For movies specifically, Cooke argues for 48 Hz, though that isn't without its drawbacks:

At 48 Hz, you're going to pull out more details at 48 Hz from the scene than at 24Hz, both in terms of motion and spatial detail. It's going to be more than 2x the information than you'd expect just from doubling the spatial frequency, because you're also going to get motion-information integrated into the signal alongside the spatial information. This is why for whip-pans and scenes with lots of motion, you're going to get much better results with an audience at faster frame rates.

Unfortunately, you're also going to get the audience extracting much more detail out of that scene than at 24 Hz. Which unfortunately makes it all look fake (because they can see that, well, the set is a set), and it'll look video-y instead of dreamy – because of the extra motion extraction which can be done when your signal changes at 40H z and above.

Advertisement

In short, higher frame rates look more real, but it makes things that are not real look less real.

So either Hollywood will either need to invest in better special effects or movie-going audiences will need to retrain our suspension of disbelief. But the increased visual information that comes with a higher frame rate could still prove valuable for the cinematic experience, especially in large formats like IMAX.

Advertisement

As the Red Camera company points out, since the visual field on an IMAX screen is so large, some onscreen action—when played at the current 24 FPS—judders more visibly and contains more visual artifacts, simply due to the amount of real estate of the screen the images are being projected onto.

"Moving objects may strobe or have a 'picket fence' appearance as they traverse a large screen," the company's blog reads. "At 24 FPS, a 50 foot screen shows an object as jumping in 2 foot increments if that object takes one second to traverse the screen."

Advertisement

But with a higher frame rate, that movement increment decreases significantly—as does screen flicker and eye strain. The question is, whether or not movie studios will be as on-board with the new method as directors like Cameron and Jackson are. After all, the main effect of the higher frame rate that viewers tend to react to is that it looks "weird" and "wrong."

Overall, the industry does appear to be gradually accepting the value of higher frame rates. YouTube recently began offering select videos—mostly video game playback—at 60 FPS to much fanfare. And with action cams like the GoPro Hero 3 which now offer 120 FPS at 720p (and 60 FPS at 1080p), the amount of content being generated at those rates is only going to increase. Though it's worth noting that video game footage is totally fake, and GoPro footage is totally real; neither medium has to blend the fake and real as carefully as movie makers do.

Advertisement

And it's these guys who will lead the charge. We're likely going to see high frame rate content spur on adoption as legions of home videographers clamor for an online means of sharing their backyard adventures—not just Hollywood directors. [Extreme Tech - Wiki 1, 2 - CMU - Accidental Scientist - Red Camera - Web Archive - BBC - High Def Digest - Frank Schrader - Sony]