Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies

Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies

The Cosmic Infrared Background Experiment fired cameras above our atmosphere to collect just seven minutes of data, but these short experiments were enough to make us realize that the vast space between galaxies is not empty, but full of solitary stars.

Advertisement

Top image: 2013 launch of the Cosmic Infrared Background Experiment out of NASA's Wallops Flight Facility in Virginia. Credit: T. Arai/University of Tokyo

When the Hubble Space Telescope was pointed at the emptiest, darkest patch of sky we could find, and still imaged hundreds of galaxies, we were startled by the fullness of the universe. When the Spitzer Space Telescope surveyed the skies and found a pervasive infrared glow, we were surprised that space is warmer than we expected even between galaxies. But until the latest results from the Cosmic Infrared Background Experiment (CIBER), we hadn't realized that the glow may be produced by orphaned stars flung free of their galaxies, filling the not-so-empty vast space between galaxies. If so, this throws our entire definition of galaxies into question, expanding them from dense clusters to more amorphous regions encompassing these far-flung stars.

Advertisement
Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies

The CIBER research team collecting their instrument after a flight. Image credit: Caltech

CIBER uses small suborbital sounding rockets, rockets so small they can't even carry a satellite into orbit, to pop above the atmosphere and snap wide-field infrared images of the galaxy. The cameras operate two infrared wavelengths shorter than Spitzer, the infrared space telescope, at 1.1 and 1.6 micron wavelengths, expanding the range of observations we have about this strange pervasive warm glow. These pictures are transmitted back to Earth, where scientists mask out bright stars, galaxies, and local light sources to get an unobstructed view of just the background glow. Four launches happened between 2010 and 2012, spaced so that the team could ensure their data was coming from outside our galaxy.

Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies
Advertisement

The CIBER data was masked to remove stars and galaxies, leaving behind an infrared glow that does not originate from any known source. Image credit: NASA/JPL-Caltech

Until CIBER, the competing explanations for the infrared glow between galaxies was either solitary stars flung free of their galaxies too distant to individually image, or a lingering relic from the very earliest galaxies. To distinguish between the theories, CIBER collected more infrared data at new wavelengths to better characterize the glow. A previously-undetected population of solitary stars would glow on the bluest end of the infrared spectrum, while ancient galaxies would be more red.

Advertisement
Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies

When added to previous Spitzer and AKARI infrared data (grey data points), CIBER data reveals the background glow (orange data points) is brighter and bluer than anticipated, coming from solitary stars (blue line) rather than early galaxies (red line). Image credit: NASA/JPL-Caltech

Advertisement

The CIBER data captured unmistakably bluer light, but also found it to be a lot brighter than anticipated. The principle investigator James Bock explains in a NASA press release:

"The light looks too bright and too blue to be coming from the first generation of galaxies. The simplest explanation, which best explains the measurements, is that many stars have been ripped from their galactic birthplace, and that the stripped stars emit on average about as much light as the galaxies themselves."

Advertisement
Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies

Brightness splotches indicate sources of infrared light outside of galaxies. Image credit: NASA/JPL-Caltech

Advertisement

The map of brightness fluctuations in the infrared background has splotches bigger than individual galaxies. Like observing the tips of icebergs to calculate subsurface ice volume, scientists can analyze the splotches of brightness to estimate the total amount of background light. Here's where things get even trippier: it looks like the infrared glow from these solitary stars is dramatically in excess of the glow produced by galaxies!

Illustration for article titled Our Universe Is Full Of Solitary Stars Flung Free Of Galaxies
Advertisement

Astrophysicists can estimate the total infrared brightness in the sky from our limited observations akin to how these scientists can calculate ice volume just from observing the tips of icebergs. Image credit: NASA/JPL-Caltech

Next up will be more experiments imaging the universe in yet more infrared wavelengths, trying to get a handle what is going on with these solitary stars. If they were stripped from parent galaxies by some cataclysmic occurrence, they should still be loitering nearby, forcing us to rethink how we draw boundaries on galaxies. And if they aren't, if these stars are truly lost and alone in space, then we're going to need to figure out how they formed, and how they got where they are today.

Advertisement

Read about the CIBER results from the two White Sands, New Mexico launches in Science. Read more publications on the experiment here.

Share This Story

Get our newsletter

DISCUSSION

Makes sense. We know that galaxies collide/pass through each other for some time now. That has to be an extremely violent and disruptive force for the millions of stars in each galaxy. With hundreds of millions of galaxies out there, there must have been millions of collisions through the course of the universe. Just a few thousand stars being flung out each time would litter the intergalactic space with millions of stars. The concept of the large numbers used in the whole of the universe is insane.

With higher detailed images I wonder if we would see a higher concentration of these rogue stars along the paths that different galaxies have taken and collided along.