This is important because of the nature of superconductivity. Much like entering the carpool lane on a highway, electrons can only jump into the superconducting “fast lane” in pairs. Anyons can split and be their own partners, however; they get a free pass without having to pay the usual “energy toll,” according to Michalakis.

Advertisement

Physicists associated with Microsoft’s Station Q and Caltech’s IQIM first proposed the idea of a topological quantum computer several years ago, while physicists at Delft University in the Netherlands found the first evidence for anyons in 2012. It was yet another team at the University of Maryland that envisioned a system comprised of a superconducting material with a thin semiconducting nanowire on top. Marcus and his Copenhagen colleagues inverted that design. They fabricated an ultra thin semiconducting nanowire and then squeezed a superconducting layer on top of it, like mustard being squeezed onto a hot dog.

The trick was to then grow the nanowires to sufficient lengths that there was no overlap between the two halves of the electron on either end (resulting from the dual wave nature of such particles). If the ends of the nanowire are too close together, the two halves will recombine into a whole electron. But get them sufficiently far apart, and electrons will split into two parts, one on each end of the nanowire.

Advertisement

That’s the result described in the new Nature paper: Marcus and his colleagues demonstrated that Kitaev’s theoretical predictions were correct. There is an exponential improvement in making these anyons, the further you separate the two ends of the nanowire.

Advertisement

And the further that separation, the more robust the system is to outside interference. “To destroy its quantum state, you have to act on both ends at the same time, which is unlikely,” co-author Sven Albrecht said in a statement.

The observation of these anyons on nanowires represents a critical first step toward a working topological quantum computer. According to Michalakis, the next step is to experimentally test whether a prototype quantum device will fuse, demonstrating that braiding should be possible. Then it’s just a matter of figuring out how to braid the anyons to store quantum information.

Advertisement

Of course, the engineering challenges involved in building a working topological quantum computer are daunting. But being able to use existing semiconducting and superconducting materials will make the path to prototype that much simpler, because physicists should be able to leverage a lot of existing technology.

[Nature]

Contact the author at jennifer.ouellette@gizmodo.com. Follow on Twitter @JenLucPiquant.

Advertisement