“The thousands of tiny droplets of glue that cover the capture spiral of the spider’s orb web do much more than make the silk sticky and catch the fly,” said study co-author and Oxford scientist Fritz Vollrath in a statement. “Surprisingly, each drop packs enough punch in its watery skins to reel in loose bits of thread. And this winching behaviour is used to excellent effect to keep the threads tight at all times, as we can all observe and test in the webs in our gardens.”

Advertisement

Vollrath and his team were inspired by this “liquid wire” to create their own composite fibers in the lab. They tapped into the delicate and subtle balance that exists between fiber elasticity and droplet surface tensions. The resulting artificial spider silk worked just like the spider’s natural winch silk; the spools of filament reeled and unreeled inside the oil droplets as the thread expanded and contracted. The material is considered a hybrid because it extends like a solid and compresses like a liquid. (The process is similar to what’s observed when water droplets come into contact with one another.)

Advertisement

Eventually, these hybrid threads could lead to advancements in materials science, engineering, and medicine.

“Our bio-inspired hybrid threads could be manufactured from virtually any components,” said first author Hervé Elettro. “These new insights could lead to a wide range of applications, such as microfabrication of complex structures, reversible micro-motors, or self-tensioned stretchable systems.”

Advertisement

[PNAS]