Still, we have absolutely no idea what dark matter is made of, or even if it's one kind of substance or a whole class of different kinds of substances. Our guess at its structure is based on what we've seen of the shape of the visible universe, where galaxies tend to cluster together in ways that suggest they're being attracted to these long, interconnected webs of invisible, untouchable, undetectable . . . stuff. Scientists are currently trying to detect dark matter particles with projects like SuperCDMS.

Advertisement

The Entire Structure of the Universe Itself

And while we're on the large-scale objects we don't understand, let's talk about the entire universe, shall we? Nothing beats the mystery of how our universe formed, why it has the shape it does, and why the heck it's getting bigger at a rapid clip.

Advertisement

Let's start by talking about dark energy, which isn't really related to dark matter. It's just that astronomers call things "dark" when they don't know what the heck they are. Dark energy is speculated to be the force that is making the universe expand. Maybe it's something like gravity, a force that affects all matter. We just don't know. But many measurements and experiments do confirm that the universe is inflating all the time, and it's actually inflating faster and faster.

Advertisement

Which leads to another mystery: When did all this inflation start? The Planck telescope has helped astronomers detect the cosmic microwave background, or light from the earliest moments of the universe. Maps of that light have revealed something truly incomprehensible: every point in the early universe seems to be pretty much the same temperature, despite each point being causally disconnected from the other. Sure, some parts of the universe were a little warmer, and some a little colder, but so far we have no explanation for how the universe managed to inflate while at the same time remaining relatively uniform.

Remarks Mac Low, "Dark energy is of course the biggest conundrum — and we don't even know for sure if it's entirely separate from inflation, although that's the current best guess. The problem is, of course, if you have two unknown things, you can't actually demonstrate that they aren't different aspects of the same thing, though it is likely." Look out for Planck experiments in the next few months that might help us start to understand inflation in the early universe — which could eventually shed some (dark) light on why we keep inflating and can't seem to stop.