But swimming is easy; for HAMR’s developers, the real challenge was finding a way for the microbot to transition from a water skimmer to an underwater walker. The problem has to do with surface tension, and the difficulty in getting such a light object to pierce through the water surface.

Advertisement
Advertisement

“HAMR’s size is key to its performance,” said Neel Doshi, a graduate student at SEAS and co-author of the paper. “If it were much bigger, it would be challenging to support the robot with surface tension and if it were much smaller, the robot might not be able to generate enough force to break it.”

For a solution, the Harvard researchers turned to the power of small-scale physics, and a concept known as electrowetting. When a high voltage is applied to HAMR’s footpads, the angle of contact to the surface is altered, making it easier for the bot to break the water surface. This jolt lets HAMR slip through the surface and sink to the bottom. The machine uses the same walking style as it does on dry land, so it retains its mobility. To prevent its electrical components from shorting underwater, HAMR is coated in Parylene, an environmentally friendly polymer.

Advertisement

An ongoing challenge, however, is getting HAMR out of the water. For an object as light as this, the surface tension can be intense, as it’s twice the weight of the robot. What’s more, the tremendous torque exerted during an exit attempt causes friction on the hind legs. To resolve this, the SEAS researchers stiffened HAMR’s transmission and added soft pads to its front legs. This increased the machine’s payload capacity and redistributed friction during climbing. With these added tweaks, HAMR was able to walk up a ramp an escape from its aquatic confines.

Looking ahead, the researchers would like to find a way to get HAMR out of the water without the benefit of a ramp, and such a luxury won’t always be available in real-world settings. But they’ve already got a couple of ideas, such as giving it gecko-like adhesives on its feet, or having it exit the water with jerky jumping motions. To be continued!

Advertisement

[Nature]