Russian Scientists Drop a Telescope Into the Deepest Lake on Earth

The neutrino telescope was dropped in the Russian lake over the weekend.
The neutrino telescope was dropped in the Russian lake over the weekend.
Photo: Alexei Kushnirenko\TASS (Getty Images)

On Saturday, a team of Russian researchers dropped a brand-new telescope into frigid Lake Baikal, the deepest lake on Earth. It wasn’t an accident; the instrument took the plunge to give the scientists a better shot at detecting neutrinos, elusive subatomic particles that are extremely difficult to spot, since they usually pass right through matter without leaving a trace.

Advertisement

It may seem counterintuitive to try to get a better view of space from nearly a mile underwater. But if you’re looking for neutrinos arriving from space instead of light, this location makes a lot more sense. Neutrinos slice through most ordinary matter like butter: By the time you reach the end of this sentence, hundreds of trillions of neutrinos will have shot through your body. When transiting through some media, like water, however, the particles can sometimes leave evidence of their existence.

undefined
The topside of Baikal-GVD.
Photo: Alexei Kushnirenko\TASS via Getty Images (Getty Images)

Lake Baikal contains more water than all the Great Lakes put together, making it a prime spot to observe those pesky little particles. So the Russians—in a collaboration with Czech, German, Polish, and Slovakian researchers—splashed the neutrino sensor into the lake, about 2 miles off shore. (In Irkutsk, the lake is frozen over and is a destination for all types, from particle physicists to Instagram influencers).

The Russian telescope is not the first to seek out neutrinos in alien terrain; the United States has a detector nicknamed IceCube that is constituted by a cubic kilometer of ice at the South Pole. This one also has an arguably less catchy name: the Baikal Gigaton Volume Detector, or Baikal-GVD for short.

Looking like a technological crystal ball, with its circuitry visible through the clear glass sphere, the telescope is set up to detect neutrinos about a third of a mile away in any direction, or about as far as Toronto’s CN Tower is tall. Eventually, Dmitry Naumov of the Joint Institute for Nuclear Research told AFP, that distance would be doubled.

Advertisement
undefined
Now, the telescope is thousands of feet underwater.
Photo: Alexei Kushnirenko\TASS via Getty Images (Getty Images)

“Of course, Lake Baikal is the only lake where you can deploy a neutrino telescope because of its depth,” Bair Shoibonov of the Joint Institute for Nuclear Research told the AFP. “Fresh water is also important, water clarity too. And the fact that there is ice cover for two, two and a half months is also very important.”

Advertisement

Scientists want to detect neutrinos for many reasons. For one, learning more about neutrino behavior could help us understand why there’s more matter than antimatter in the universe.

Science writer at Gizmodo.

DISCUSSION

dnapl
Dense non aqueous phase liquid

Lake Baikal contains more water than all the Great Lakes put together, making it a prime spot to observe those pesky little particles.

It’s like 4 to 5 percent bigger (or more voluminous). Big whoop. Lake Baikal is 5670 cubic miles and The Great Lakes is 5439 cubic miles per google. Sorry, the subject here is particle physics. Neutrino study is very interesting, yes.