Orf’s team used real-world observational data to recreate the conditions at the time of the storm, including a vertical profile of temperature, air pressure, wind speed, and moisture. Together, these ingredients contribute to “tornadogenesis”—the conditions required for a supercell to spawn a tornado.

Advertisement

Unlike a conventional computer program, where code is written to churn out predictable results, the researchers sought to create a “true” representation by feeding archived weather data into software that simulates weather. This provided a degree of variability that’s reflective of how weather works in nature; no two storms are exactly alike. In total, it took the machine more than three days to compile the tornado—a task that would have taken decades for a conventional desktop computer.

Advertisement

Looking at the simulation, the researchers observed numerous “mini tornadoes” that formed at the onset of the main tornado. As the main funnel cloud took shape, the smaller tornadoes began to merge, adding strength to the superstructure and boosting wind speeds.

Advertisement

Eventually, a new structure known as the streamwise vorticity current (SVC) formed within the tornado. “The SVC is made up of rain-cooled air that is sucked into the updraft that drives the whole system,” said Orf in a statement. “It’s believed that this is a crucial part in maintaining the unusually strong storm, but interestingly, the SVC never makes contact with the tornado. Rather, it flows up and around it.”

From here, Orf would like to share his team’s data with scientists and meteorologists across the United States. “We’ve completed the EF-5 simulation, but we don’t plan to stop there,” says Orf. “We are going to keep refining the model and continue to analyze the results to better understand these dangerous and powerful systems.”

Advertisement

[University of Wisconsin-Madison]